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1    Introduction 
The subject of partially adaptive array processing has received significant 
attention in the late 70's and 80's [1, 9, 8, 10, 11]. Several of these pa- 
pers assume a generalize sidelobe canceller (GSC) implementation of the 
linearly-constrained minimum variance (LCMV) beamformer, which allows 
unconstrained adaptive minimization of array output power when the array 
is constrained to provide an all-pass frequency response in given directions 
of arrival. The GSC decomposes the observation vector (snapshot of ele- 
ment outputs), which can contain thousands of entries, into a "constraint 
space" component which lies in the space spanned by the columns of the 
constraint matrix C, and a "noise space" component that is orthogonal to 
the constraint space component.   As shown in Figure 1, the standard pro- 

(N,-1)N,+ I 

(Nl-l)Ns+2 

\"-    \-" 

Figure 1: Standard generalized sidelobe canceller. 

cedure is to apply adaptive weights, controlled by some adaptive algorithm, 
to the noise space component and subtract the result from the constraint 
space component to get the output of the GSC. The objective of a partially 
adaptive array design is to reduce the number of adaptive weights, since they 
are expensive to implement. Stated differently, the objective is to reduce the 
rank of the autocorrelation matrix for the observation vector (that is, the 
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vector to which the adaptive weights are applied). Partial adaptivity or rank 
reduction is achieved by operating on the noise space (column) vector with 
a non-square (fewer rows than columns) orthonormal transformation T, as 
shown in Figure 2, where the rows of this matrix form a lower dimensional 

M3- 
y-u- 

^Q 
be dm 

sieenng 
de lavs 

wr 

wc w 

array 
output 

—> 

Adaptive 

Algorithm 

Figure 2: Transform domain 

basis for the adaptive weight vectors. This lower-dimensional subspace may 
be called the adaptive weight vector solution space or AWVSS, after [8]. The 
problem becomes how to best select the rank-reducing transformation, or 
equivalently, the best AWVSS. 

An important observation about this problem is that for a given station- 
ary scenario and for a single point constraint in the GSC, there is no "best" 
multidimensional AWVSS, without additional constraints. That is, if one 
is free to choose any transformation, and one knows the scenario statistics 
a priori, then the best AWVSS is one-dimensional, and is given simply by 
the optimum full-rank weight vector. Any basis vectors that are orthogo- 
nal to the optimum full-rank weight vector may be used with it to create a 
multidimensional AWVSS, and all such AWVSS's will yield the same mini- 
mum array output power for that scenario. However, if the scenario statistics 
change, e.g. a jammer changes its waveform or a new jammer turns on, then 
the optimum weight vector will generally change.   With an infinite number 



of scenarios, the question becomes what multidimensional AWVSS will serve 
well for most of the expected scenarios. 

Another use of the transformation is to statistically decorrelate the ele- 
ments of the observation vector in the AWVSS. The well-known benefit of 
this decorrelation is fast convergence of the transform-domain normalized 
least mean squares (LMS) algorithm [16]. 

The fllterbank [4] discussed in this report is a way of constraining the 
choices of rank-reducing transformations or AWVSS's to a small set with 
desirable properties. These properties include (1) that the filterbank has a 
tree structure that can adaptively grow as statistics are collected, (2) that 
there is a reasonable amount of decorrelation between the filterbank outputs, 
allowing for speedy convergence of the transform domain normalized LMS 
algorithm, and (3) that evaluating the transformation involves only addition 
and sign changes; it requires no floating point multiplications. 

The results in this report include steady-state analysis of the performance 
of the reduced-rank GSC when a filterbank structure is used as the rank- 
reducing transformation. The array output power using the filterbank is 
compared to the un-transformed array output power with the same number 
of adaptive weights. We address the question of how to grow the tree struc- 
ture and how to prune the tree to get reduced rank. We discovered that 
for an example linear array, there is a very significant preference for a par- 
ticular filterbank structure, namely the wavelet structure. Furthermore, we 
show that for an example linear array, the penalty in array output power is 
very small if the wavelet structure is always used, regardless of the jamming 
scenario within a large collection of scenarios. As a further investigation of 
subspace preference, we developed a simple and straightforward monte carlo- 
type procedure to approximate the optimum AWVSS for a given collection 
of jamming parameters. We show the sensitivity to rank of the array output 
power using the monte carlo technique. 

A MATLAB script was written to simulate the transform domain nor- 
malized LMS algorithm using filterbank transformations under nonstation- 
ary jamming conditions. The script allows the filterbank structure to change 
at regular intervals, in order to track the changing jamming conditions. A 
section of the report discusses some of the implementation details of this 
script, and includes some simulation results. 



2     Notation and Geometrical Interpretation 

The notation used in this report follows that of [5, 6]. The generalized 
sidelobe canceller, shown in Figure 1, is a way to implement a linearly- 
constrained tapped-delay-line (TDL) wideband adaptive array [2] so that an 
unconstrained adaptive algorithm may be used [2, 3]. We assume a uniform 
linear array and that a steering vector is used to ensure that the effective 
angle of the desired signal is broadside or 0 degrees from the normal to the 
array. For the minimum variance distortionless response (MVDR) array of 
A' sensors and J taps per TDL, and a single constraint, the beamforming 
matrix takes the form [13] 

1 
W,- 

K 

where 1 represents a column vector of A ones. The look direction signals 
are blocked from the adaptive processor by the A" - 1 x A' signal blocking 
matrix. Ws. such that WSWC = 0. For a five sensor array, for example. 

W, 

1-10 0 0 
0 1-10 0 
0 0 1-10 
0     0      0      1-1 

The data vector representing the entire array TDL structure is denoted by 
the A ./-dimensional column vector X(k). X(k) is made up of J snapshots 
of the array element outputs x(k) such that 

X(k) = [xT(k] xT(k - 1)  ... xT(k - J + 1)]T 

The (A' - 1)J x KJ block diagonal extended signal blocking matrix, Wse. 
and the A'J-dimensional extended constraint vector, Wce, are given as 

W, 

W, 
w, 

w. 
wr 

wc 
0 

where 0 denotes a vector with all-zerc elements. The (A' - l)J-dimensional 
noise space component is given by Xs(k) = WseX(k) and the constraint 



space component is given by d(k) = W%X(k). The output of the array is 

e(k) = d(k)-WH{k)Xs{k), 

where W(k) is the (A'-l) J-dimensional adaptive weight vector. The optimal 
value of W(k) that minimizes the array output power solves the Wiener-Hopf 
equation Wopt = R^R^, where Rxs = £{XsXf }, Rrd = E{Xsd}, and Xf 
is the conjugate transpose of Xs. The average array output power, or the 
mean squared error, is given by E{e2}. When the optimal weights are used, 
the minimum mean squared error (MMSE) is expressed 

E{e2} = rdd-R?dR;}Rxd, 

where rdd = E{d2(k)}. When a transformation T is used on the noise space 
component, as in Figure 2, then the transform domain noise space component 

is Z{k) — TXS and the output of the array is 

e(k) = d{k) - WT(k)Z{k). 

The optimal weight vector in the transform domain is given by 

Wopt = R^R.d, I2) 

where R22 = E{ZZH}, Rzd = E{Zd}. The MMSE for the transform domain 

GSC is 
E{e2} = rdd-R»dR:jRzd. 

If the transformation is non-singular, then the MMSE of the transform do- 
main GSC and the standard GSC are equal. If the transformation is singular 
or rank deficient with rank M, then the MMSE of the transform domain 
GSC will generally be greater than for the standard GSC, and the increase 
in MMSE will depend on how far away the full-rank optimal weight vector 
Wopt is from the subspace spanned by the rows of T. As in the case of the 
standard GSC, the performance of the transform domain GSC is invariant 
to nonsingular transformations following T, so for steady state analysis, we 
may assume that Rzz is diagonal. In this case the MMSE becomes 

M   r2 

E{e2}   =   rdd-J2-^ (3) 
t=l rzz.« 

r*i(l-E4). (4) 



where rzd,t is the correlation of the z'th element of Z(k), or zt(k), with the 
constraint space component d(k), r„, = E{zf(k)}, and 

E2{Zi(k)d(k)} 2 
Pzd,i 

irdd 

p~d.t is the normalized correlation coefficient between zt{k) and d(k); its mag- 
nitude is bounded by unity, and its nearness to unity indicates the quality of 
the linear homogeneous MMSE estimate of d by z,-. Let Rxx = E{XXH} and 
T,- be the ith row of T. Then pzd<i = cos(0,-), where 6, is the angle between 
[13. p. 194] 

V = R^W« (5) 

and 

U, = R^W^T" (6) 

as illustrated in Figure 3.    Note that when R„  is diagonal,  the U,-'s are 
orthogonal vectors, but not necessarily normalized.  One can casually think 

Figure 3: Geometrical interpretation of the transform domain GSC. 

of pzd:i as the cosine of the angle between Wce and W^Tf, if it is implicit 
that the inner product is weighted with Rxx. 

Since the U/s are orthogonal, we have that 

M M 

cos2(0) = £cos2(0t) = £/&,,■, (7) 
i=i 



where 9 is the angle between V and the subspace spanned by the columns of 

Ri/2WtfT. Clearly, the closer that subspace is to V, the lower is the MMSE 

c/the transform domain GSC. V is the projection of V onto the span of 

Ri/2W^T, and therefore can be expressed 

v = y = iv-^u„ (8) 

where (•) denotes inner product. Substituting the expressions in equations 
(5) and (6) into equation (8) yields the dependence of V on Wop, from in 

equation (2): 

v = [U!U2 ... uA*]nv = Ryr
2w^r"nv. 

3     The Filterbank Transformation 

The tree-structured filterbank used in this report is made up of quadrature 
mirror filter (QMF) blocks [4]. One QMF block is shown in Figure 4(a). 
The QMF block in this report is equal to the two-point DFT. The block 
consists of a high pass filter, represented by the z-transform H{z) = 1-2 \ 
and a low pass filter, represented by L{z) = 1 + z~\ as shown in Figure 
4(b). Each filter output is decimated-by-two. The filters create two subbands 
in the frequency domain, qualitatively shown on the right in Figure 4(b). 
The transitions could be made sharper by using longer filters (i.e. filters 
with longer impulse responses). The benefit of using longer filters would 
be improved decorrelation among the filterbank outputs, and hence faster 
convergence of the transform domain normalized LMS algorithm. 

If an eight-element input sequence is given as X = [xx, x2, ..., x8] , 
then the decimated output of the high pass filter is [x2 - xi, x4 - x3, x6 - 

x^ x& _ X7\T. The decimated output of the low pass filter is the same, 
except the minus signs are changed to plus signs. Thus the QMF block may 
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Figure 4:  The quadrature mirror filter (QMF). 

be represented by a matrix Tl: 

Tl = 

-1 1 0 0 0 0 0 0 
0 0 -1 1 0 0 0 0 
0 0 0 0 -1 1 0 0 
0 0 0 0 0 0 -1 1 
1 1 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 0 0 1 1 

and the output of the block is Tl * Xs. 
The QMF blocks are arranged in a tree structure to create the filterbank. 

Several example tree structures are shown in Figure 5. These structures will 
be refered to, in the remainder of this report, by TLL, TLH, THL, THH, 
and TU, respectively. The TLL structure in Figure 5(a) can be described by 
Tl multiplied by the matrices described below. 
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Figure 5: The five filterbank structures available for the five sensor, two tap, 
single constraint case. 



The second tier of the filterbank in Figure 5(a) can be represented by 
another square matrix T2: 

T2 

and the third tier bv T3: 

T3 

" 1   0 0 0 0 0 0 0 
0   1 0 0 0 0 0 0 
0   0 1 0 0 0 0 0 
0   0 0 1 0 0 0 0 
0   0 0 0 -1 1 0 0 
0   0 0 0 0 0 -1 1 
0   0 0 0 1 1 0 0 
0   0 0 0 0 0 1 1 

" 1    0 0 0 0 0 0 0 ' 
0   1 0 0 0 0 0 0 
0   0 1 0 0 0 0 0 
0   0 0 1 0 0 0 0 
0   0 0 0 1 0 0 0 
0   0 0 0 0 1 0 0 
0   0 0 0 0 0 -1 1 
0   0 0 0 0 0 1 1 _ 

The entire filterbank may be represented by a matrix T, that is the product 
of the above three matrices T = T3 * T2 * Tl, and 

■1 0 1 
0 0 
0 0 
0 0 

-1 -1 
0 0 

-1 -1 -1 
1 1    1 

1 
0 
0 
1 
0 

0 
1 
0 
0 
1 
0 

0 
0 

-1 
0 
0 

-1 
1 
1 

0 
0 
1 
0 
0 

-1 
1 
1 

0 0 1 
0 0 
0 0 
-1 1 
0 0 
1 1 
1 1 
1 1 _ 

The widest band has four output samples, the next widest band has two out- 
put samples, and the narrowest band has only one output sample. Regardless 
of how the tree is grown, there will always be the same number of total out- 
put samples as there are input samples. Thus T is square and furthermore 
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it is not singular; therefore using it has no effect on the MMSE of the GSC 
and it does not reduce the number of adaptive weights. To achieve rank 
reduction, some rows of T must be pruned away. The result of pruning will 
be a non-square, Mx(K-l)J matrix, where M <(K-1)J. The challenge 
is to grow the right tree structure and then prune intelligently. In [5, 6], an 
eight input example like this one was used and only the first sample was kept 
from each band, resulting in a rank reduction of four. As we will show in a 
later section, the choice of which sample to keep can make a difference of up 

to 3 dB in MMSE. 

3.1     Growing the Filterbank 

We have investigated several filterbank growth algorithms. In our early filter- 
bank growth algorithm [6], the filterbank was initialized with just Tl. The 
energy in each of the two bands was estimated and then the band with the 
highest energy was further refined with another QMF block, yielding three 
bands. Next, the band with the highest energy of the three was further re- 
fined, and so on. In other words, the filterbank grew in the direction of the 
most energy. The filterbank attempted to equalize the power in its bands, 
placing the narrowest bands in the regions of highest energy. Once the fil- 
terbank structure was complete, the first sample of each band was kept and 
the rest were pruned away. We then realized that this growth and pruning 
method totally ignored the correlation between the filterbank outputs and 
the constraint space component. As shown in the previous section, choos- 
ing a transformation that maximizes these correlation coefficients in turn 
minimizes the MMSE. For example, jammer A could have a direction of ar- 
rival that coincides with a null in the quiescent pattern or constraint space 
component, and have significant energy relative to the other jammers in the 
auxiliary beams or noise space component. The energy-based growth algo- 
rithm will grow the filterbank in the directions of jammer A's energy, and 
prune away directions that relate to the other jammers, and the result would 
lead to poor correlation coefficients. 

A later filterbank growth algorithm, reported in [6], estimated the sum 
in equation (3) for each of a finite collection of pruned filterbank structures. 
A simulation was run for 3 sensors, one directional constraint, and 4 taps 
on each Ws so that Xs was eight-dimensional. A tree-structured filterbank, 
using the two-point DFT QMF blocks, was used to reduce the number of 

11 



Signal DOA SNR in dB fc % BW 
desired 0° 0 0.10 12 % 

jammer 1 45° 17 0.16 2% 
Jammer 2 60° 32 0.08 1 % 

Table 1: Signal parameters for the fllterbank simulation 

adaptive weights to four. The five fllterbank structures that use three half- 
band refinements are shown in Figure 5. The first sample from each band 
was kept and the others were pruned away. There were two jammers and one 
desired signal illuminating the array. The jammer and signal parameters are 
given in Table 1. 

The steady-state array patterns using the optimal weights are presented 
for the four-weight TDL processor, the four-weight fllterbank processor, and 
the eight-weight TDL processor in Figures 6, 7, and 8, respectively. The 
four-weight fllterbank pattern matches very closely the eight-weight TDL 
pattern, and the MMSE is very close as well. The MMSE for the four- 
weight TDL was 13.5 dB, for the four-weight fllterbank was 10.5 dB, and 
for the eight-weight TDL was 10.03 dB. The fllterbank therefore gave a 3 
dB improvement over the TDL processor with the same number of adaptive 
weights. The transform-domain normalized LMS algorithm was simulated 
MMSE-based growth algorithm. The learning curves for the four-weight 
TDL processor and the four-tap fllterbank processor, averaged over 1000 
independent simulations, are shown in Figure 9. It appears that the fllterbank 
improves convergence time over the four-weight TDL in addition to lowering 
the MMSE. 

12 



angle of arrival (deg) 
normalized frequency 

Figure 6:   Antenna gain pattern for the four-weight TDL processor.   The 
MMSE is 13.5 dB. 
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angle of arrival (deg) normalized frequency 

7: Antenna gain pattern for the four-weight filterbank processor   The 
is 10.5 dB. 

Figure 
MMSE is 10.5 dB. 
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Figure 8:  Antenna gain pattern for the eight-weight TDL processor.   The 
MMSE is 10.03 dB. 
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Figure 9:  Learning curves for the four-weight TDL processor and the four- 
weight filterbank processor, averaged over 1000 trials. 
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A variation on the growth algorithm in [6] is to simply refine the band that 
contains the maximum absolute value of pzd, i over i. If the transformation 
T produces a diagonal Rzz, then this method is suboptimal since the angle 8 
can be small even though 0,- is not small for any i (see equation (7)). However, 
if Kzz is not diagonal, then this method gives results comparable to that of 

[6], and is alittle easier to program. 

3.2    Pruning Choices 

In an earlier section, we observed that simply growing a filterbank does not 
provide rank reduction. The tree must be pruned. Since refinements are 
performed on branches that have high correlation with the constraint space 
component, we look to the branches that are not refined for pruning. The 
branches that are not refined have several samples at their outputs for ev- 
ery one sample of the longest filter (or branch). For example, in the TLL 
structure of Figure 5(a), there are four samples at the output of the upper- 
most branch and two samples at the next uppermost branch. If we decide to 
keep one sample from each band (for decorrelation purposes), then we have 
4x2 = 8 choices for pairs of samples to keep. We wondered if there was 
much difference between these eight pruning choices in terms of MMSE of 
the rank-reduced array. We found that there is often a significant difference 
in MMSE between these choices. An experiment was conducted using 500 
randomly selected jamming scenarios using the 5 sensor, 2 tap MVDR array. 
Note that the Ws matrix for this experiment is different than the one in 
equation (1), but has the same span. We allowed the parameters for three 
barrage noise jammers to be independently and uniformaly distributed over 
the following ranges: [-90°,+90°] in angle of arrival, [0, 30] in jammer-to-noise 
(JNR) ratio in dB, [0,1] in normalized center frequency, and [0,30] in percent 
bandwidth. For each random scenario or trial, the MMSE was computed 
for each pruning choice for each filterbank structure. For each structure, the 
minimum MMSE choice and the maximum MMSE choice was identified, and 
the difference between maximum and minimum MMSE was recorded. The 
trials were grouped according to which filterbank structure had the lowest 
MMSE (using the best pruning choice). Figure 10 contains histograms of the 
differences between min and max MMSE in dB. The upper left histogram 
corresponds to the group of 319 trials for which the TLL structure was the 
best. We observe that for the majority of trials, at least 250 of them, there 
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Signal DOA SNR in dB fc %BW 
desired 0° 0 0.89 0.9% 

jammer 1 27.2° 24.4 0.76 24% 
Jammer 2 -34.5° 26.9 0.17 16% 
jammer 3 -79.1° 27.5 0.57 26% 

Table 2: Scenario for which best structure was TLL and for which the pruning 
choice MMSE difference was 1.09 dB. 

Signal DOA SNR in dB fc % BW 
desired 0° 0 0.27 13% 

jammer 1 4.39° 13.2 0.95 12% 
jammer 2 -17.7° 22.0 0.74 25% 
jammer 3 15.6° 22.1 0.68 1 % 

Table 3: Scenario for which best structure was TLL and for which the pruning 
choice MMSE difference was 3.4 dB. 

is less than one dB difference in MMSE between the eight pruning choices. 
However, the differences were as much as 3 dB in a few trials. The large 
difference cases do not necessarily correspond to stronger jammers than the 
1 dB difference cases. For example, a scenario with the parameters in Table 
2 produced a pruning choice difference of 1.09 dB, while the scenario with 
the parameters in Table 3 produced the pruning choice difference of 3.4 dB. 

The remaining histograms indicate that when the optimal filterbank struc- 
ture is not TLL, then the pruning choice can make a difference of 4 dB or 
higher. 
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mation choices for each filterbank structure. 
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Filterbank Structure 
TLL TLH THL THH TU 

Number of trials 1655 3 214 4 124 

Table 4: Statistics for filterbank structures that yield the lowest MMSE for 
a set of 2000 random scenarios. 

4    Subspace Selection Using Prior Statistics 

We found that we had to conduct an extensive search to find scenarios for 
which the minimum MMSE filterbank structures were different. This led us 
to investigate the general question of what is the best AWVSS. To illustrate 
the filterbank issue, we present the following example of the five sensor uni- 
form linear LCMV array with two taps and one directional constraint.  We 
allowed the parameters for three barrage noise jammers to be uniformaly dis- 
tributed over the following ranges: [-90°,+90°] in angle of arrival, [-20, +20] 
in jammer-to-noise (JNR) ratio in dB, [0,0.5] in normalized center frequency, 
and [0.30] in percent bandwidth.   Observe that the JNR range implies that 
the scenario can have effectively one, two, or three jammers.  For each ran- 
dom trial of the scenario parameters, we determined the best structure and 
the best pruning of that structure in terms of MMSE, always keeping the 
samples from the longest two filters. If the best structure was not structure 
(a), then we computed the penalty in MMSE that would result if structure 
(a) were used.  The results of this analysis are shown in Table 2.  We found 
that 80% of the time filterbank structure (a) was preferred.   Furthermore, 
for the cases that another filterbank structure minimized output power, the 
penalty for using structure (a) was slight:   < 0.5 dB for 93% of the cases, 
< 1 dB in 98% and < 2.5 dB for the remainder of cases.  This means that 
algorithms that involve time-varying filterbank structures need to be care- 
fully evaluated in terms of the trade-off between cost of implementation and 
expected improvement over a fixed filterbank or other fixed transformation. 

After making the observation that changing filterbank structures is often 
not necessary, we considered the question of what is the best il/-dimensional 
subspace for the adaptive weights. Several other authors [8, 9, 10, 11, 12, 13 
14] have considered this question. 
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Van Veen's method [9, 10, 11, 13] is to minimize the average output 
power of the LCMV array, where the average is taken over a selection of 
interference scenarios, and the minimization is over all transformations of a 
specified rank. In [12], he considers optimizing over the quiescent pattern in 
addition to the rank-reducing transformation. Ma and Griffiths [8] approach 
was to compute a set of sample full-rank optimum weight vectors in the 
noise space and then determine the solution hyperplane that minimizes the 
sum of the squared distances of the full rank optimum weight vectors to the 
solution subspace. Van Veen's approach is optimal in the sense that he is 
optimizing over the array output power, but the calculation appears to be 
rather difficult. The approach in [8], while suboptimal in terms of array 
output power, involves a calculation that is less complex. The collection of 
scenarios in both [8] and [12] are limited to variations in interferer directions. 
These papers all deal with beamformer design using a priori statistics and not 
with real-time calculation, although the techniques are probably amenable to 
real-time implementation. The authors in [14], on the other hand, consider 
a very interesting real-time calculation that decides first how many adaptive 
weights there should be based on the Akaike Information Criterion and the 
Minimum Description Length criterion, and second, the appropriate space for 
those adaptive weights using a Gram-Schmidt orthogonalization procedure 
that incorporates the constraint space component. 

The method reported here takes an approach very similar to that used 
in [8], and considers a much larger variation in scenarios. The details of our 
method are described next and then the method is compared to [8]. 

For each random selection of jamming and signal parameters described 
in the opening paragraph of this section, the optimal full-rank weight vector, 
Wopt, is computed. These column vectors are collected into a matrix A = 
[Wopt(i),W0p4(2),...,Wop<(7v)], where Wopt{l) is the optimal full rank vector 
for the z'th random selection. The singular value decomposition (SVD) is 
performed on AT, AT = USVH. If a rank M transformation is desired, then 
the TT is designated to be the first M columns of V. This solution optimizes 
the matrix norm of the difference between A and TT [15]. 

In [8], a mean weight vector is first computed, X]I=1 ^Wopt(,-), and then 
the mean vector is subtracted from each optimal weight vector prior to the 
formation of A. Then an eigendecomposition is performed on AAH. The 
eigenvectors of AAH corresponding to the (K — 1) J — M smallest eigenvalues 
are used to augement the constraint on the adaptive weight vector. 
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We now present a numerical example. We calculated the full-rank optimal 
weight vector for each of 1000 random trials. Next the SVD method was 
used to identify the best rank M transformation, where M ranges from 1 to 
(A' - \)J for the five sensor, two tap example. We then ran an additional 
1000 trials, where in each trial we calculated the difference in MMSE for 
the full-rank optimal weight vector and the M-dimensional optimal weight 
vector, or the MMSE penalty, using the rank-M transformation calculated 
from the previous 1000 trials. We did this for two different wideband arrays. 
The first example array is the 5 sensor, 2 tap MVDR array used in previous 
examples.  The second array is the 11 sensor, 8 tap MVDR array.   Figures 
11 and 12 correspond to the first example and Figures 13 and 14 correspond 
to the second array. Each figure contains several curves. Consider the curve 
in Figure 11, labelled 90%, for example. For a rank value of two, this curve 
takes the value 1.5. This means that in 90% of the 1000 trials, use of the 
rank-two transformation incurred an MMSE penalty less than 1.5.   Figure 
12 has the same curves as Figure 11, plus the 100% curve. If we look at the 
rank 4 transformation, we see that 95% of the time the penalty is negligible, 
and all of the penalties in these 1000 trials were less than about 1.5 dB. If 
we use the rank 5 transformation, all penalties are negligible. To check that 
this phenomenon was not peculiar to the 5 sensor, 2 tap case, we tried 11 
sensors and 8 taps. The rank 4 transformation is still pretty good, incurring 
penalties less than 2 dB 95% of the time. The rank 12 transformation was 
required to ensure that all penalties were negligible. It is remarkable that 
with no rank reduction, the second array has 80 degrees of freedom; yet a 
fixed transformation taking the number of adaptive weights from 80 down to 
12 incurs no significant penalty over 1000 random scenarios. These results 
suggest that the appropriate rank-reducing transformation may not depend 
as much on the scenario as originally thought. 
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Figure 11: Averaged MSE Penalty of partially adaptive GSC for 1000 trials 
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MSE Penalty of Partially adaptive GSC 

Figure 12: Averaged MSE Penalty of partially adaptive GSC for 1000 trials 
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MSE Penalty of Partially adaptive GSC 

Figure 13: Averaged MSE Penalty of partially adaptive GSC for 1000 trials 
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MSE Penalty of Partially adaptive GSC 

Figure 14: Averaged MSE Penalty of partially adaptive GSC for 1000 trials 
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5     The Time-Varying Filterbank 

Suppose that a certain jamming scenario has a particular minimum MMSE 
fllterbank structure, but then a jammer turns off, moves, changes in some 
way or another jammer turns on. The new scenario may have a different 
minimum MMSE fllterbank scenario. An adaptive algorithm could be made 
to sense the need to change the fllterbank, if the minimum MSEE values for 
the two structures in the second scenario are different enough. A MATLAB 
script was written to simulate such an algorithm along with the normal- 
ized transform-domain LMS algorithm for the five sensor, two tap, single 
directional constraint MVDR array. This section discusses some of the im- 
plementation issues and presents some example simulation results. 

5.1     Implementation Notes 

Before description of the time-varying fllterbank (TVFB) algorithm, it will 
be convenient to define some additional notation. As before, T is the square 
matrix that represents the unpruned fllterbank and Z is the output of the 
unpruned tree, so Z = T*XS. Let T be the nonsquare matrix that represents 
the pruned fllterbank; T is made up of selected rows of T. Let Z = T * Xs 

be the output of the pruned tree. 

Using single-pole filters, the algorithm estimates R„, the autocorrelation 
matrix for Z, and R,^, the crosscorrelation of Z with d(k). It may be possible 
to get by with estimating diag(R22) instead of the full matrix R22, but we 
found the the full matrix is needed to properly regrow the fllterbank when the 
need is detected. The normalized correlation coefficients pzd,i are computed 
using the smoothed estimates of diag(R22) and R2j at each timestep. 

The fllterbank is initialized to the most preferred structure (TLL for the 
example array simulated) and the pruning choice was arbitrarily chosen to 
be the first sample in each band. At regular intervals, the algorithm checks 
to see if the fllterbank should be changed. The detection criterion is based on 
the variation on the growth algorithm in [6] discussed at the end of Section 
3.1. The detection process is simply to see if the maximum of p^ over i 
corresponds to one of the longest filters. This test is based on the assumption 
that since the fllterbank is grown in the direction of maximum correlation co- 
efficient, that the output of the longest filter will have the highest normalized 
correlation coefficient. In the event that a fllterbank output from other than 
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the longest filter had the largest correlation coefficient, then the statistics for 
the output of the first filterbank stage are obtained from those of the present 
fully grown filterbank. These statistics are the autocorrelation matrix 

(T3*T2)-1RZZ(T3*T2)-T (9) 

and the crosscorrelation (T3 * T2)~1Rzd- The normalized correlation coef- 
ficients for the first stage are then estimated, and the filterbank is regrown 
in the direction of largest correlation coefficient. The need for having an 
estimate of the full autocorrelation matrix Kzz is evident from equation (9). 
After the filterbank is grown to have the longest possible filter, then pruning 
takes place. The longest filter outputs are kept and then from the remaining 
outputs, the outputs with the largest correlation coefficients are kept until 
the desired rank is attained. 

When the filterbank changes structure, the MSE can be kept low by 
properly mapping the LMS weights and re-setting diag(Rz,) to keep the 
proper LMS step size. Noting that the rows of DT are normalized and 
orthogonal, the weight mapping is: 

W/6inew = Tnew * Tjld * W/feold 

This mapping ensures that weights that correspond to U,'s that are shared 
by the old and new DT's will be preserved (perhaps shuffled), and not set 
to zero. 

We found it helpful to reinitialize the estimates of R~z and R^ after 
each filterbank check. Although hundreds of timesteps are needed for the 
estimates of R,, and R,^ to converge to their true values, we found that 
not many steps were needed (20 or less) for the estimates of pzcitl to become 
distinct enough for accurate filterbank growth. 

5.2     Simulation Results 

In this section we present simulation results for the 5 sensor, 2 tap, single di- 
rectional constrain MVDR array, that has been used throughout this report. 
We simulated for 700 timesteps. The scenario described in Table 5 lasted 
from the beginning up to timestep 200, at which time the scenario changed 
to that of Table 6.   These scenarios were picked because in a collection of 
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500 randomly generated scenarios, they prefered structures (a) and (b), re- 
spectively, and they had the largest difference in minimum MMSE from any 
of the other filterbank structures among other scenarios that prefered their 
same respective structures. Specifically, the first scenario has a steady state 
minimum MMSE of 8.12 dB when the TLL structure is used and any other 
structure yields a minimum MMSE of at least 10.04 dB. The second scenario 
has a steady state minimum MMSE of 4.05 dB for the TLH structure, and 
any other structure yields a minimum MMSE of at least 6.37 dB. In partic- 
ular, the minimum MMSE for the second scenario and the TLL structure is 
7.19 dB. a 3.14 dB difference from TLH. Since preferred filterbank structures 
other than TLL are hard to find, we have provided the steady state patterns 
for second scenario and the optimum filterbank structure. Figures 15 through 
20 show three sets of pattern cuts and three complete patterns. The first two 
of these figures correspond to the full rank optimal weight vector (8 dimen- 
sional) for 5 sensors, 2 taps. The second two of vhese figures correspond to 
the full rank optimal weight vector (4 dimensional; for 3 sensors and 2 taps. 
And the last two of these figures correspond to the reduced rank optimal 
weight vector (4 dimensional; for 5 sensors, 2 taps, using the TLH filterbank 
with optimal pruning. Each pattern cut is for constant frequency and vari- 
able angle to ensure that nulls are produced in the right places. Each plot 
has three curves correponding to the exact frequency of a jammer and plus 
or minus 0.01 in normalized frequency. We note that in these simulations, 
the antenna elements are A/2 apart for the highest frequency of unity and 
the taps are spaced at the Nyquist rate for the highest frequency. One thing 
to notice about the complete patterns is that a wide null is required for the 
powerful second jammer. The 8-dimensional Tapped Delay Line (TDL) and 
the 4-dimensional filterbank arrays can put down a wide null. However, the 
4-dimensional TDL array cannot do as well. 

The algorithm checked for currect filterbank structure every 150 timesteps, 
starting at 150. The sequence of events is thus: at 150, the algorithm has a 
chance to change the filterbank structure from its initial TLL to something 
else. In this simulation it stayed with TLL but changed its pruning choice. 
At 200, the scenario changed, while the filterbank was held at TLL. At 300, 
the algorithm had another opportunity to change structures, and this time it 
chose TLH, which is the optimal structure for this scenario, and therefore a 
correct choice. At 450 and 600, there were other opportunities for structure 
change but the structure remained at TLH. Figures 21 and 22 show how 
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the MSE and the real values of the adaptive weights evolve over time. This 
MSE is not smoothed; it is simply the squared value of the array output. The 
LMS algorithm appears to be converging prior to change in pruning choice at 
150. The MSE increases somewhat after the pruning change, because of the 
subspace change. The initial convergence is also evident in the weight trajec- 
tories. The pruning change is evident also as one of the weight real parts goes 
to zero at 150. This is because the dimension (i.e. the Uz) corresponding to 
that adaptive weight in the initial pruning choice does not exist in the space 
spanned by the second pruning choice at 150. The weights appear to be 
converging again between 150 and 200, and presumably they would converge 
and provide a lower MSE because of the better pruning choice. But they do 
not converge before the scenario changes at 200, creating a big spike (+500) 
in MSE. The weights again appear to be converging but the MSE has grown 
because the filterbank has the wrong structure for the new scenario. At 300, 
the algorithm changes the structure to the correct one, the weights converge 
and the MSE settles down. We reran this set of scenarios several times using 
different random seeds, with similar results. 

6     Conclusions 

This report has explored various issues associated with time-varying partially- 
adaptive arrays using the generalized sidelobe canceller framework, and the 
use of a simple filterbank structure to achieve rank reduction. We observed 
that many reasonable jamming scenarios can be well accomodated with a 
fixed rank-reducing transformation. The tree-structured filterbank offers a 
finite collection of rank-reducing transformations with desirable qualities. 
The filterbank can be implemented using only addition and subtraction; 
no multiplication. The longer filters of the filterbank, when it is grown in 
the directions of best normalized correlation coefficient, span a subspace for 
the adaptive weights which is close in angle to the signal to be cancelled. 
The longer filters provide some decorrelation between inputs to the adaptive 
weights, therefore yielding fast convergence of the transform-domain normal- 
ized LMS algorithm. Pruning of the shorter filters achieves rank reduction 
with a small penalty in MMSE relative the the optimal full-rank MMSE. 

30 



Signal DOA SNR in dB fc %BW 

desired 0° 0 0.70 21 % 

jammer 1 7.30° 18.96 0.51 28% 

jammer 2 -69.1° 16.49 0.72 11 % 

jammer 3 41.9° 15.32 0.97 19% 

Table 5: The first scenario in the simulation. This scenario prefers the TLL 

or structure (a). 

Signal DOA SNR in dB fc %BW 

desired 0° 0 0.07 5.3% 

jammer 1 30.6° 17.98 0.58 24.4 % 

jammer 2 -69.2° 27.94 0.36 7.9% 

jammer 3 43.15° 6.42 0.96 27.1 % 

Table 6:   The second scenario in the simulation.   This scenario prefers the 

TLH or structure (b). 
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Figure 15: Pattern cuts for 5 sensor, 2 tap full rank optimal solution 
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M=5, L=2, TDL, MMSE = 0.7932 

Frequency Angle of Arrival, degrees 

Figure 16: Complete pattern for full rank optimal solution 
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Figure 17: Pattern cuts for 3 sensor, 2 tap full rank optimal solution 
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M=3, L=2, TDL, MMSE = 9.432 

Frequency 0     -100 
Angle of Arrival, degrees 

Figure 18: Complete pattern for 3 sensor, 2 tap full rank optimal solution 
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Figure 19: Pattern cuts for 5 sensor, 2 tap filterbank optimal solution 
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M=5, L=2, TLH, MMSE = 4.056 dB 
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Figure 20: Complete pattern for 5 sensor, 2 tap filterbank optimal solution 
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Figure 21: Learning curve for time-varying filterbank. 
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700 

Figure 22: Trajectory for real parts of adaptive weights. 
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